{jatex}\documentclass[12pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage[landscape]{geometry}
% To make this come out properly in landscape mode, do one of the following
% 1.
% pdflatex latexsheet.tex
%
% 2.
% latex latexsheet.tex
% dvips -P pdf -t landscape latexsheet.dvi
% ps2pdf latexsheet.ps
% If you're reading this, be prepared for confusion. Making this was
% a learning experience for me, and it shows. Much of the placement
% was hacked in; if you make it better, let me know...
% 2008-04
% Changed page margin code to use the geometry package. Also added code for
% conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen
% for the suggestions.
% 2006-08
% Made changes based on suggestions from Gene Cooperman.
% To Do:
% \listoffigures \listoftables
% \setcounter{secnumdepth}{0}
% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
}
% Turn off header and footer
\pagestyle{empty}
% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{2ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\small\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{2ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\footnotesize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\tiny\bfseries}}
\makeatother
% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
% Don't print section numbers
\setcounter{secnumdepth}{0}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
% -----------------------------------------------------------------------
\begin{document}
\raggedright
\footnotesize
\begin{tabular}{@{}p{\linewidth / 4}
@{}p{\linewidth / 4}
@{}p{\linewidth / 4}
@{}p{\linewidth / 4}@{}}
\begin{center}
\large{\textbf{Formulario de F\'{i}sica}}\\
\tiny{\'{U}ltima actualizaci\'{o}n: \today}
\end{center}
\section{Movimiento en l\'{i}nea recta}
\begin{tabular}{@{}p{\linewidth}@{}}
\textbullet Velocidad media \\
\hspace{0.5em}
$v_{media} = \frac{s}{t_2 - t_1} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$
\\
\\
\textbullet Velocidad instant\'{a}nea \\
\hspace{0.5em}
$v = lim_{t_2 - t_1 \rightarrow 0}\frac{x_2 - x_1}{t_2 - t_1} = \frac{dx}{dt}$
\\
\\
\textbullet Aceleraci\'{o}n media \\
\hspace{0.5em}
$a_{med} = \frac{v_2 - v_1}{t_2 - t_1}$
\\
\\
\textbullet Aceleraci\'{o}n instant\'{a}nea \\
\hspace{0.5em}
$a_{inst} = \frac{dv}{dt}$
\\
\\
\end{tabular}
\vspace{-1.5em}
\subsection{MUA}
\begin{tabular}{@{}p{\linewidth}@{}}
\hspace{0.5em}
$v_{med} = \frac{x-x_0}{t}$
\\
\\
\hspace{0.5em}
$v_{med} = \frac{v+v_0}{2}$
\\
\\
\hspace{0.5em}
$a_{med} = \frac{v-v_0}{t}$
\\
\\
\textbullet Velocidad final \\
\hspace{0.5em}
$v = v_{0} + at$
\\
\\
\textbullet Posici\'{o}n final \\
\hspace{0.5em}
$x = x_0 + v_{0}t + \frac{1}{2}at^2$
\\
\\
\textbullet Velocidad final independiente de t \\
\hspace{0.5em}
$v_x^2 = v_{0}^2 + 2a(x - x_0)$
\\
\\
\textbullet Posici\'{o}n final independiente de a \\
\hspace{0.5em}
$x = (\frac{v_{0} + v}{2})t + x_0$
\\
\\
\end{tabular}
\vspace{-1.5em}
% SECOND COLUMN PAGE TABLE
&
\section{Movimiento de proyectiles}
\begin{tabular}{@{}p{\linewidth}@{}}
\textbullet Componente de v en x \\
\hspace{0.5em}
$v_{x} = v\cos\theta$
\\
\\
\textbullet Componente de v en y \\
\hspace{0.5em}
$v_{y} = v\sin\theta$
\\
\\
\textbullet Velocidad en x \\
\hspace{0.5em}
$v_x = v_0\cos\theta$
\\
\\
\textbullet Posici\'{o}n en x \\
\hspace{0.5em}
$x = x_0 + v_0\cos\theta t$
\\
\\
\textbullet Velocidad en y \\
\hspace{0.5em}
$v_y = v_0\sin\theta + gt$
\\
\\
\textbullet Posici\'{o}n en y \\
\hspace{0.5em}
$y = y_0 + v_0\sin\theta t + \frac{1}{2}gt^2$
\\
\\
\textbullet (Componente) Vector velocidad \\
\hspace{0.5em}
$ v = \sqrt{v_x^2 + v_y^2}$
\\
\\
\textbullet Direcci\'{o}n del proyectil (\'{a}ngulo) \\
\hspace{0.5em}
$tan\theta = \frac{v_y}{v_x}$
\\
\\
\end{tabular}
\vspace{-1.5em}
\subsection{Altura y rango m\'{a}ximo}
\begin{tabular}{@{}p{\linewidth}@{}}
\textbullet Tiempo en alcanzar altura m\'{a}xima \\
\hspace{0.5em}
$t_{h_{max}} = \frac{v_0\sin\theta}{g}$
\\
\\
\textbullet Altura m\'{a}xima \\
\hspace{0.5em}
$h_{max} = \frac{v_0^2\sin^2\theta}{2g}$
\\
\\
\textbullet Tiempo en llegar al m\'{a}ximo alcance \\
\hspace{0.5em}
$t_{R} = 2t_{h_{max}}$
\\
\\
\textbullet M\'{a}ximo alcance \\
\hspace{0.5em}
$R = \frac{v_0^2\sin2\theta}{g}$
\\
\\
\end{tabular}
\vspace{-1.5em}
% THIRD COLUMN PAGE TABLE
&
\section{Movimiento circular uniforme}
\begin{tabular}{@{}p{\linewidth}@{}}
\textbullet R es el radio de la circunferencia \\
\hspace{0.5em}
$ a_{rad} = \frac{v^2}{R} = \frac{4\pi^2R}{T^2}$
\\
\\
\textbullet T: tiempo en recorrer 1 vez la circunferencia \\
\hspace{0.5em}
$v = \frac{2\pi R}{T} = \frac{d}{t}$
\\
\\
\end{tabular}
\vspace{-1.5em}
\section{Leyes de Newton}
\begin{tabular}{@{}p{\linewidth}@{}}
\textbullet $\theta$ respecto al eje x \\
\hspace{0.5em}
$F_x = F \cos\theta$
\\
\hspace{0.5em}
$F_y = F \sin\theta$
\\
\\
\textbullet $\theta$ respecto al eje y \\
\hspace{0.5em}
$F_x = F \sin\theta$
\\
\hspace{0.5em}
$F_y = F \cos\theta$
\\
\\
\textbullet Principio de superposici\'{o}n \\
\hspace{0.5em}
$F_T = \sum{F}$
\\
\\
\textbullet Primera Ley de Newton \\
\hspace{0.5em}
$ \sum{F} = 0$
\\
\\
\textbullet Segunda Ley de Newton \\
\hspace{0.5em}
$F_T = ma$ \\
\hspace{0.5em}
$F_{Tx} = ma_x$ \\
\hspace{0.5em}
$F_{Ty} = ma_y$
\\
\\
\textbullet Tercera Ley de Newton \\
\hspace{0.5em}
$F_{accion} = F_{reaccion}$ \\
\hspace{0.5em}
$w = mg$
\\
\\
\textbullet Trabajo ($N \cdot m = Joules$) \\
\hspace{0.5em}
$W = F (x - x_0) = Fs$
\\
\hspace{0.5em}
$W_x = Fs_x \cos\theta$
\\
\hspace{0.5em}
$W_y = Fs_y \sin\theta $
\\
\\
\textbullet Teorema del trabajo-energ\'{i}a \\
\hspace{0.5em}
$W=\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = K_2 - K_1$
\\
\\
\textbullet Energ\'{i}a Cin\'{e}tica \\
\hspace{0.5em}
$K = \frac{1}{2}mv^2$
\\
\\
\end{tabular}
\vspace{-1.5em}
% FOURTH COLUMN PAGE TABLE
&
\section{Vectores}
\begin{tabular}{@{}p{\linewidth}@{}}
\hspace{0.5em}
$F_x = F \cos\theta$
\\
\hspace{0.5em}
$F_y = F \sin\theta$
\\
\hspace{0.5em}
$\vec{F} = \vec{F_x} + \vec{F_y} = F\cos\theta_{\hat{i}} + F\sin\theta_{\hat{j}}$
\\
\hspace{0.5em}
$F = \sqrt{F_x^2 + F_y^2}$
\\
\hspace{0.5em}
$\theta = \tan^{-1} \frac{F_y}{F_x}$
\\
\\
\textbullet Distancia entre dos puntos en el espacio \\
\hspace{0.5em}
$\left|P_1P_2\right| = $
\\
\hspace{0.8em}
$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
\\
\\
\textbullet Vector unitario \\
\hspace{0.5em}
$\hat{u} = \frac{\vec{QP}}{\left\|\vec{QP}\right\|} = \frac{P-Q}{\left\|P-Q\right\|}$
\\
\hspace{0.5em}
$\vec{T} = T\hat{u}$
\\
\\
\textbullet Cosenos directores \\
\hspace{0.5em}
$\theta_x = \cos^{-1}\frac{F_x}{F}$
\\
\\
\hspace{0.5em}
$\theta_y = \cos^{-1}\frac{F_y}{F}$
\\
\\
\hspace{0.5em}
$\theta_z = \cos^{-1}\frac{F_z}{F}$
\\
\\
\end{tabular}
\vspace{-1.5em}
\end{tabular}
\vspace{-1.5em}
\end{document}{/jatex}